1904.09483v1 [cs.DB] 20 Apr 2019

arxXiv

CleanML: A Benchmark for Joint Data Cleaning and
Machine Learning [Experiments and Analysis]

Peng Li Xi Rao Jennifer Blase
Georgia Institute of Systems Group, ETH Zurich; Georgia Institute of
Technology KOF Swiss Economic Institute Technology
pengli@gatech.edu rao@kof.ethz.ch jolase@gatech.edu
Yue Zhang Xu Chu Ce Zhang
Georgia Institute of Georgia Institute of Systems Group, ETH Zurich
Technology Technology ce.zhang@inf.ethz.ch

yzhang3271@gatech.edu

ABSTRACT

It is widely recognized that the data quality affects machine learn-
ing (ML) model performances, and data scientists spend consider-
able amount of time on data cleaning before model training. How-
ever, to date, there does not exist a rigorous study on how exactly
does cleaning affect ML — ML community usually focuses on the
effects of specific types of noises of certain distributions (e.g., mis-
labels) on certain ML models, while database (DB) community has
been mostly studying the problem of data cleaning alone without
considering how data is consumed by downstream analytics.

We propose the CleanML benchmark that systematically inves-
tigates the impact of data cleaning on downstream ML models.
The CleanML benchmark currently includes 13 real-world datasets
with real errors, five common error types, and seven different ML
models. To ensure that our findings are statistically significant,
CleanML carefully controls the randomness in ML experiments
using statistical hypothesis testing, and also uses the Benjamini-
Yekutieli (BY) procedure to control potential false discoveries due
to many hypotheses in the benchmark. We obtain many interesting
and non-trivial insights, and identify multiple open research direc-
tions. We also release the benchmark and hope to invite future
studies on the important problems of joint data cleaning and ML.

PVLDB Reference Format:
.. PVLDB, (): XXXX-YyYY. .
DOIL:

1. INTRODUCTION

The quality of machine learning (ML) applications is only as
good as the quality of the data it trained on, and data cleaning
has been the cornerstone of building high-quality ML models for
decades. Not surprisingly, both ML and database (DB) communi-
ties have been working on problems associated with dirty data over
the last decades:

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. , No.

ISSN 2150-8097.

DOI:

xu.chu@cc.gatech.edu

e ML community has been focusing on understanding the impact
of noises to ML models without actually doing data cleaning. On
one hand, many ML algorithms are robust to noises — there has
been research showing that the noise introduced during the train-
ing process, via e.g., asynchronous execution and lossy data com-
pression and quantization, can have negligible effect in the final
accuracy, both empirically and theoretically [[16} |27} 45| |46l |55,
68, |69]]. On the other hand, ML algorithms can also be sensitive
to other types of noises, especially those non-white noises that
are in the input data and labels [32]. As a result, the community
has been focusing on designing ML algorithms that are robust to
noises, such as noise-robust decision trees [S3]], the use of reg-
ularization for improving robustness [[61]], and model bagging to
reduce the variability of model performances caused by dirty data.

e DB community has been mostly focusing on understanding the
fundamental process of data cleaning without considering its im-
pact on ML models. Data cleaning activities usually consist of
two phases: error detection, where various errors and violations
are identied and possibly validated by experts; and error repair,
where updates to the database are applied (or suggested to human
experts) to bring the data to a cleaner state. Many different tech-
niques have been proposed to detect different types of errors, for
example, by designing integrity constraints to capture data incon-
sistencies [23]], by using quantitative and statistical techniques to
detect outliers [39]], and by building ML models to detect dupli-
cates [30]. Various heuristics and techniques have also been pro-
posed to suggest data repairs, for example, by finding the minimal
set of updates to resolve violations [24]], by performing data trans-
formations [38]], by consulting external knowledge bases [25]],
and by using probabilistic graphical models to reason about er-
rors holistically [S6].

(The Emerging Problem of Joint Cleaning/ML) In real applica-
tions, these two angles as less segregated — In many, if not most,
real-world applications, neither does the ML nor the data cleaning
task appears on its own — instead, the most common paradigm is
to have a data cleaning component followed by a ML model learn-
ing phase. As the majority of previous work has been focusing
on solving each individual task independently, we believe that the
joint data cleaning/ML problem is an interesting research topic for
the DB community in the years to come. This paper is by no means
the first to recognize the opportunities in performing data cleaning
and model learning jointly — We are inspired by a range of re-
cent work conducted by the DB community, which are discussed in

Section

(Our Scope) Many of the early work that tries to jointly deal with
data cleaning and ML only focus on a specific subset of data fal-
lacies and a specific set of ML models and tasks. For example,
ActiveClean [44] only considers convex models that are trained us-
ing gradient descent methods, and also assumes that there is a data
cleaning oracle to clean the mini-batches during training. Boost-
Clean [43] selects a predefined set of error detection and repair
combinations using statistical boosting. While it shows promising
results in terms of increased predictions after cleaning, it only con-
siders domain value violations when an attribute value is outside of
its value domain and only tests the random forest model.

The goal of this paper is not to propose a new algorithm, instead,
our goal is to (1) conduct a systematic study of the impact of var-
ious types of errors and cleaning methods on downstream various
ML models; (2) construct the first benchmark for joint cleaning and
ML tasks, in terms of both collecting real-world datasets with real
errors and designing methods to evaluate the impacts; (3) provide
a systematic, qualitative statement of the challenges and potentials;
and (4) provide a starting point for follow-up studies by the com-
munity in the future.

(Challenges) Conducting such a systematic study and constructing
benchmark datasets is not a trivial task. The difficulties hinge on
dealing with the following challenges:
e Realistic noise patterns. Taking a standard ML benchmarks
dataset and simply simulating data fallacies trivially (e.g., by ran-

domly removing values to mimic missing values) might under/over-

estimate the impact of data cleaning on ML. For our study to re-
flect the real impacts, we have to work with data that has realistic
noise patterns, for which we usually do not have ground truth.

e Comprehensive ML models. Studying a single ML algorithm
(e.g., logistic regression as [60] did) is enough to evaluate a new
algorithm, and yet, is not enough to provide a qualitative assess-
ment on the impact of data cleaning on ML — Maybe there are
other, simpler or more complicated, ML algorithms that are more
robust to noises and are performing relatively well, hence elimi-
nating the need for cleaning.

o Statistically significant results. ML models are inherently prob-
abilistic — a different train/test split on the same dataset might
produce entirely different results. This is further complicated
by the many uncertainties and choices in the data cleaning al-
gorithms (e.g., different imputation methods for missing value).
While it might be easy to find a dataset, a cleaning method, and a
ML model that jointly show the benefits of joining cleaning and
learning, how to ensure that our findings are statistically signifi-
cant presents a major challenge.

(Contributions) We focus on five types of errors, including out-

liers, duplicates, inconsistencies, mislabels and missing values. These

errors are prevalent in the real-world datasets and frequently con-
sidered in research. We select seven classification algorithms, in-
cluding Logistic Regression, Decision Tree, Random Forest, Ad-
aboost, XGBoost, k-Nearest Neighbors (KNN) and Naive Bayes.
These algorithms are chosen because they are classical and com-
petitive classification models and are frequently used in practice.
Our major contributions are summarized as follows:

e We collected 13 real-world datasets containing different types of
errors, applied common data cleaning techniques, and devised
classification tasks that were meaningful in the context of the data.

e We trained and evaluated ML models on dirty and cleaned ver-
sions of each dataset. We then compared model performance to

show the effects of cleaning dirty data on ML models, in terms of
both cleaning training set and cleaning test set.

e We controlled randomness in ML experiments using paired sam-
ple t-test, and also leveraged multiple hypothesis testing proce-
dures to control false discoveries. We also explained our findings
whenever possible, by examining the dataset error distributions,
the ML model structures, and the properties of different cleaning
algorithms.

e We made our benchmark publicly available for reproducibility
(https://chu-data-lab.github.i0/CleanML/). Inad-
dition, our benchmark can be easily extended by adding new datasets,
new error types, new cleaning algorithms, or new ML models.

(Summary of the Insights) We present our detailed findings in
Section 5] Here we summarize the following major insights from
our benchmark as follows.

e Data cleaning does not necessarily improve the quality of down-
stream ML models. In fact, applying cleaning methods blindly
may negatively impact model performances. This is because, with
the lack of ground truth, cleaning algorithms may actually intro-
duce more biases into the data than the original biases caused by
data dirtiness.

e In general, the impacts of cleaning on ML depend on the errors
and their distributions on the datasets (which are unknown), the
correctness of the cleaning algorithms (which are also unknown
without ground truth), and the internal structures of the ML mod-
els (which can be hard to interpret for some models). While some
of our experimental results can be clearly attributed to one or two
of these factors, many results remain hard to interpret as they are
affected by these factors in combination.

e Performing model selection can significantly increase the robust-
ness of impacts of cleaning on ML. This suggests that the models
with higher validation accuracy scores (i.e., those are chosen as
the best models) are often more robust in terms of the improve-
ments.

e Performing cleaning algorithm selection further increases the ro-
bustness of impacts of cleaning on ML. This suggests that no sin-
gle cleaning algorithm is the best, and any future joint cleaning
and ML work must devise “adaptive” cleaning solutions.

The rest of the paper is organized as follows. We introduce our
experimental and analysis methodologies, including CleanML re-
lational schema and its queries in Section 2] which we are using
to organize our experimental study. In Section[3] we explain the
domains of each attribute in our CleanML relational model. In
Section [4} we discuss how we actually conduct the experiments
to populate the CleanML database, which includes ways to con-
trol randomness and false discoveries. In Section [5] we analyze
the CleanML database using SQL queries to group by various at-
tributes to obtain insights. We discuss related work in both ML and
DB communities in Section 6l We conclude our work and discuss
open research directions in Section

2. EXPERIMENTAL METHODOLOGY

The impact of dirty data and data cleaning on ML in a dataset
depends on a number of factors — some factors depend on the data
cleaning process, i.e., the error types to be cleaned and the cleaning
methods; some factors depend on the ML process, i.e., the model
types used; and some factors depend on where the cleaning is per-
formed during the ML process (training set or test set). Hence, in
order to comprehensively investigate the impacts, we need to con-
sider data cleaning and ML jointly in our experiments.

In Section[2.1] we first introduce the CleanML relational schema,
where every tuple corresponds to a unique experiment or hypothe-
sis to be tested (e.g., how does filling in missing values using me-

https://chu-data-lab.github.io/CleanML/

dian imputation on the training set affect logistic regression in the
dataset X?). In Section [2.2] we present our approach for analyzing
the impacts of data cleaning on ML using CleanML relations.

2.1 CleanML Schema

Table 1: CleanML Relational Schema
R1 (Vanilla)
[Dataset | Error Type | Detection | Repair | ML Model | Scenario [Flag |
R2 (With Model Section)
[Dataset | Error Type | Detection | Repair | Scenario | Flag |

R3 (With Model Selection and Cleaning Method Selection)
[Dataset | Error Type | Scenario [Flag |

The CleanML relational schema consists of three relations, as
shown in Table[Il We first introduce the attributes of our CleanML
relational models, and then explain the differences between these
three relations.

o Attributes for Dataset. The first attribute is dataset, which is
the input to the data cleaning and ML pipeline. Each dataset can
have multiple types of errors and has an associated ML task. Even
for one error type, they might appear in a dataset in various dis-
tributions and hence affect ML models in complicated ways. To
study the impact of real-world error types and distributions on
ML models, we mostly use real-world datasets with real errors,
and we apply various cleaning methods to detect and repair the
errors in them (with the exception of mislabels for which we use
the real-world datasets with injected errors as there is no known
cleaning method to detect mislabels, as discussed in Section [3.T)).
We list all the datasets we use in Section [3.2]

e Attributes for Data Cleaning. The error type attribute describes
which type of dirtiness we are testing. We consider five most
common types of dirtiness that are considered in the ML and
DB communities: missing values, outliers, duplicates, inconsis-
tencies, and mislabels. For each error type, there exist multiple
cleaning methods, and each cleaning method includes an error
detection component and an error repair component. We discuss
the error types and their cleaning methods in Section (3.1

o Attributes for ML. The ML model describes the algorithm of
training and prediction. Different ML models may have different
robustness or sensitivity to dirty data. We give a description of
the chosen ML models in Section [3.3}

e Attributes for Cleaning Scenario. The scenario attribute indi-
cates whether the cleaning operation is applied in the training set
or the test set, in other words, whether cleaning benefits ML dur-
ing the model training process or the model evaluation process.
We explain this further in Section[3.4]

o Flag Attribute. The flag attribute summarizes the impact of data
cleaning on ML of an experiment into three categories, “P (pos-
itive)”, “N (negative)” or “S (insignificant)”, indicating whether
the cleaning has a positive, negative, or insignificant impact on
the ML performance respectively.

Given these attributes, we designed three relations as shown in
Table [l R1 shows the vanilla version of the a CleanML relation
schema with the key {dataset, error type, detect, repair, ML model,
scenario, flag}. Every tuple of R1 represents a hypothesis or an ex-
periment: how does cleaning some type of error using a detection
method and a repair method affect a ML model for a given dataset?
We also consider other two versions of relations in CleanML. Com-
pared with R1, R2 eliminates the ML model attribute. In this case,
we try different models during training and select the model that
has the best validation accuracy (or F1 score) as the model to be
considered in an experiment in R2. Every tuple of R2 represents

a hypothesis or an experiment: how does cleaning some type of er-
ror using a detection method and a repair method affect the best
ML model for a given dataset? R3 further eliminates the cleaning
method (detection and repair) attributes. In this case, in addition
to model selection, we also try different cleaning methods and se-
lect the cleaning method that results in the best validation accuracy
as the cleaning method to be considered in an experiment in R3.
Every tuple of R3 represents a hypothesis or an experiment: how
does the best cleaning method affect the predictive performance of
the best model for a given dataset?

All three relations can also be extended with other attributes that
are associated with an experiment, which may help obtain insights
and interpret the results, such as the accuracy scores before and
after cleaning and p-values of hypothesis testing associated with
each experiment (c.f. Section[d.I|to [.3).

2.2 Analysis Methodology

The general analysis strategy is to query the tuples in the rela-
tional schema shown in Table [l We first fix the error type and
group by flags. The percentage of each type of flag indicates the
general impact of cleaning this type of error on ML. For example,
if flag “P” dominates in the error type outliers, it indicates clean-
ing outliers generally improves the performance of ML. Then we
group by the other attributes (e.g., ML models, datasets, etc.) in
addition to flags to see how each attribute affects the impact. For
example, if flag “S” dominates under the ML algorithm decision
tree, it indicates decision tree is insensitive to this error.

We also investigate the changes of percentage in each type of flag
when moving from R1, to R2 and R3. This indicates how model
selection and cleaning algorithm selection affect the impacts. For
example, if the percentage of flag “N” significantly decreases from
R1 to R2, it indicates the model selection reduces the negative im-
pact of data cleaning on ML.

We investigate the impact of dirty data on ML models by sim-
ply running SQL queries on three relations R1, R2 and R3. We
formally present the SQL query templates as follows, where £ €
{inconsistencies, duplicates, mislabels, outliers, missing values}.

Q1: Flag

SELECT flag, COUNT (%)
FROM R

WHERE error_type = E
GROUP BY flag

Q2: Scenario

SELECT scenario, flag, COUNT (x)
FROM R

WHERE error_type = E

GROUP BY scenario, flag

Q3: ML Model. (Not applicable to R2, R3)

SELECT model, flag, COUNT (%)
FROM R

WHERE error_type = E

GROUP BY model, flag

Q4: Clean Method (Not applicable to R3 or E € { inconsisten-
cies, duplicates, mislabels}, where only one cleaning method
is applied)

Q4.1: SELECT detect_method, flag, COUNT (*)
FROM R
WHERE error_type = E
GROUP BY detect_method, flag

Q4.2: SELECT repair_method, flag, COUNT (*)
FROM R
WHERE error_type = E
GROUP BY repair_method, flag

Q5: Dataset
SELECT dataset, flag, COUNT (x*)
FROM R

WHERE error_type = E
GROUP BY dataset, flag

3. DESIGN OF BENCHMARK

Based on CleanML Relational Schema, we design CleanML Bench-

mark by specifying the domain of each key attribute. In Sections[3.]]
to|3.4] we present all datasets, error types, cleaning methods, ML
models, and cleaning scenarios we consider in the benchmark.

3.1 Error Types and Cleaning Methods

We consider five error types that are prevalent in the real-world
datasets, including missing values, outliers, duplicates, inconsis-
tencies and mislabels. While there are many cleaning methods in
the literature (c.f. Section[6), we consider the most straightforward
one in this study. The definition and the cleaning methods of each
error type are described below and summarized in Table 2]

Table 2: Cleaning Methods

Error Type Detect Method | Repair Method
- Deletion
Missing Values | Empty Entry Tmputation:
Mean Mode
Median Mode
Mode Mode
Mean Dummy
Mode Dummy
Median Dummy
SD Deletion
Imputation:
Outliers QR Mean
Median
IF Mode
Duplicates Key Collision Deletion
Inconsistencies | OpenRefine Merge
Mislabels Ground Truth Flip Labels

3.1.1 Missing Values

Missing values occur when no value is stored for some attribute
in an observation. We detect missing values by finding empty or
NaN entries in datasets. We use two methods to repair missing
values:

e Deletion: Delete records with missing values.

e Imputation: For numerical missing values, we consider three
types of imputation methods: mean, median and mode. For cat-
egorical missing values, we use two types of imputation meth-
ods: the mode (most frequent class) or a dummy variable named
“missing”. Therefore, we have six imputation methods. In Table
we denote each imputation method by the numerical imputa-
tion and categorical imputation (e.g. “Mean Dummy” represents
imputing numerical missing values by mean and imputing cate-
gorical missing values by dummy variables).

3.1.2 Outliers

An outlier is an observation that is distant from other observa-
tions. We only consider numerical outliers in our experiments. We
use three methods to detect numerical outliers.

e Standard Deviation Method (SD): A value is considered to be
an outlier if it is n numbers of standard deviations away from the
mean of the attribute it belongs to. We use n = 3.

e Interquartile Range Method (IQR): Let ()1 and @3 be the 25th
and the 75th percentiles of an attribute. Then, the interquartile
range IQR = @3 — Q1. A value is considered to be an outlier if
it is outside the range of [Q1 — k X IQR, Q3 + k x IQR]. We
use k = 1.5.

e Isolation Forest Method (IF): The isolation forest isolates obser-
vations by randomly selecting a feature and randomly selecting a
split value of the selected feature. This partition can be repre-
sented by a tree structure and outliers will have noticeably shorter
paths in the random trees. We use the scikit-learn IsolationForest
and set the contamination parameter to be 0.01.

We use two methods to repair numerical outliers in the datasets.

e Deletion: Records with outliers entries are removed from the
datasets.

e Imputation: Outliers entries are imputed. We consider three
types of imputation: mean, median and mode.

3.1.3 Duplicates

Duplicates refer to the records that correspond to the identical
real-world entity. We detect duplicates by defining the key attribute
that is unique for each entity in the dataset. If two records have an
identical value on the key attribute, they will be considered as du-
plicates. We repair the duplicates by keeping the first and deleting
all the others.

3.1.4 Inconsistencies

Inconsistencies occur when two values correspond to the identi-
cal real-world entity but have different representations. We detect
inconsistencies in datasets using OpenRefine [63|] and repair them
by merging different representations into one in OpenRefine.

3.1.5 Mislabels

Mislabels occur when an observation is incorrectly labeled. Since
mislabels in our datasets come from error injection, we already
know which label is incorrect. We repair mislabels by flipping the
label. Our protocol in injecting class noise follows the recommen-
dation in [34 pg. 25]: (1) uniform class noise: flip 5% in each
class, in total 5% of the labels are changed; (2) pairwise class noise:
in binary classification, flip 5% of the labels in class 0 and keep the
labels for class 1 or flip 5% of the labels in class 1 and keep the
labels for class 0.

3.2 Datasets

We collected 13 real-world datasets from different sources to
conduct our experiments. Each dataset contains one or more types
of error summarized in Table[3} For mislabels, we cannot find exist-
ing real-world datasets with both mislabels and ground truth. Since
it is difficult to clean mislabels without ground truth (we do not
know whether a label is mislabeled unless we have ground truth
or domain knowledge), we injected mislabels in three real-world
datasets.

Airbnb: This dataset contains 42,492 records on hotels in the top
10 tourist destinations and major US metropolitan areas scraped
from Airbnb.com. Each record has 40 attributes including the num-
ber of bedrooms, price, location, etc. Demographic and economic
attributes were scraped from city-data.com. The classification task
is to determine whether the rating of each hotel is 5 or not. This
dataset contains missing values, numerical outliers and duplicates.
Citation: [1] This dataset consists of titles of 5,005 publications
from Google Scholar and DBLP. Given a publication title, the clas-
sification task is to determine whether the paper is related to Com-
puter Science or not. This dataset contains duplicates.

Company: [2]] The original dataset contains over 2.5 million records

Table 3: Dataset and Error Types

Datasets Error T‘?'p'es -
. . . Missing . *Mislabels
Inconsistencies | Duplicates Val Outliers Dat:
alues ata
Airbnb X X X
Citation X
Company X
Credit X X
EEG X X
KDD X X X
Marketing X
Movie X X
Restaurant X X
Sensor X
Titanic X
University X
USCensus X X

*Note: Mislabels in datasets come from error injection.

about companies including company names and locations. Be-
cause of its large size, we randomly sampled 5% records (128,889
records) from the original dataset. Each record has seven attributes
including company name, country, city, etc. The classification task
is to predict whether the company sentiment is negative or not. This
dataset contains inconsistent company names.

Credit: [3] This dataset consists of 150,000 credit data with 10
attributes including monthly income, age, then number of depen-
dents, etc. The classification task for this dataset is to predict whether
a client will experience financial distress in the next two years. This
dataset has a class imbalance problem. There are only 6.7% records
in minority class. This dataset primarily contains missing values
and numerical outliers.

EEG: [4] This is a dataset of 14,980 EEG recordings. Each record
has 14 EEG attributes. The classification task is to predict whether
the eye-state is closed or open. This dataset contains numerical out-
liers. We inject mislabels into this dataset by randomly flip labels.
KDD: 6] This dataset contains 131,329 records about projects and
donations from DonorsChoose.org. Each record has 100 attributes.
The classification task is to predict whether a project is “exciting”.
This dataset has a class imbalance problem. There are 11% records
in the minority class. This dataset contains missing values and nu-
merical outliers. We inject mislabels into this dataset by randomly
flip labels.

Marketing: This dataset consists of 8,993 data about household in-
come from a survey. Each record has 14 demographic attributes in-
cluding sex, age, education, etc. The classification task is to predict
if the annual household income is less than $25000. This dataset
contains missing values.

Movie: [10,|5]] This dataset consists of 9,329 movie reviews, which
we obtained by merging data from IMDB and TMDB datasets.
Each record has seven attributes including title, language, score,
etc. The classification task is to predict the genre of the movie
(romance or comedy). It contains duplicates and inconsistent rep-
resentations of languages.

Restaurant: [7|| This dataset contains 12,007 records about restau-
rants, which we obtained by merging data from the Yelp and Yel-
lowpages datasets. Each record has 10 attributes including city, cat-
egory, rating, etc. The classification task is to predict whether the
categorical price range of a restaurant is “$” or not. This dataset
consists of duplicates and inconsistent restaurant names and cate-
gories.

Titanic: [9] This dataset contains 891 records and 11 attributes
from the Titanic including name, sex, age, etc. The classification
task is to determine whether the passenger survived or not. This
dataset has a significant number of missing values.

Sensor: [8] The original sensor dataset contains 928,991 sensor
recordings with eight attributes including temperature, humidity,
light, etc. Because of the large size, we only used recordings from

sensor 1 and sensor 2 and sampled the dataset to include 1 obser-
vation per hour, and day for each sensor. The sampled dataset con-
tains 62,076 records. The classification task is to predict whether
the readings came from a particular sensor (sensor 1 or sensor 2).
This dataset contains outliers.

University: [11] This dataset contains 286 records about universi-
ties. Each record has 17 attributes including state, university name,
SAT scores, etc. The classification task is to predict whether the
expenses are greater than 7,000 for each university. This dataset
contains inconsistent representations for states and locations.
USCensus: [12] This dataset contains 32,561 US Census records
for adults. Each record has 14 attributes including age, education,
sex, etc. The classification goal is to predict whether the adult earns
more than $50,000. This dataset contains missing values.

3.3 ML Models

We select seven classical and competitive classification algo-
rithms in our experiments, including Logistic Regression, KNN,
Decision Tree, Random Forest, Adaboost, XGBoost and Naive Bayes.
‘We used scikit-learn [50] to train models. Each model is described
below.

Logistic Regression: Logistic regression is a binary classifier that
uses a Sigmoid function to create a linear classification bound-
ary. Logistic regression uses optimization methods to determine
the best regression coefficient of the function based on the training
data [48]].

KNN Classifier: KNN classifier uses a distance metric (Euclidean
distance in our experiments), and the number of nearest neighbors
(k) to calculate the distance between records in the training set.
After calculating the distance it then retrieves the k nearest neigh-
bors. Once the algorithm has found those neighbors, it can classify
a record in the test set by computing its distance to other training
records and using the class labels of the nearest neighbors to deter-
mine the label class of the unknown record [37]].

Decision Tree: CART (Classification & Regression Trees) deci-
sion trees were used in this analysis. During training, the decision
tree splits the data based on homogeneity. Gini index is used to
measure node impurity and the attribute with minimum Gini index
is used as the split node. This algorithm recursively partitions data
until the splitting is completed [52].

Random Forest: Random forests are an ensemble learning method
for classification. During training, the random forests algorithm
constructs several decision trees and outputs an aggregated predic-
tion (often the mode of the classes). Predictions in the test set are
then made using this output [26]].

Adaboost: Adaboost, also known as “Adaptive boost”, is a meta-
learning algorithm with high theoretical and empirical performance.
It uses weak learners and transforms them into high performance
learners by repeatedly emphasizing mispredicted instances. In ex-
periments, the decision tree is our base learner. [36]

XGBoost: XGBoost is short for “Extreme Gradient Boosting”. Itis
an implementation of gradient tree boosting system designed to be
highly efficient and scalable. It is one of the most popular packages
used by competitors to win ML challenges [21]. We use gradient
boosted tree as our base learner in the experiments.

Naive Bayes: Naive Bayes predicts a class given a set of fea-
tures using Bayes Theorem. This algorithm assumes independence
among all attributes when the class is given [57].

We preprocess features before training ML models following
these common practice: (1) Categorical variables were encoded
using one hot encoding. (2) Text embeddings were used for non-
categorical text attributes. We computed their tf-idf matrix using
TfidfVectorizer from scikit-learn [50]. (3) Data were standardized

to a mean of 0 and variance of 1. (4) Class-imbalanced datasets
were downsampled, i.e., for every observation of the minor class,
we randomly sample from the major class without replacement, to
make the number of the instances in the major class equal to that in
the minor class during the training.

3.4 Scenarios

Given a dataset with a train/test split, and a cleaning method,
we can have different model performance depending on where the
cleaning is performed. Table] shows the four cases: Case A repre-
sents a model built using the original dirty training set and tested on
the original dirty test set; Case B represents a model built using the
original dirty training set and tested on the cleaned test set; Case
C represents a model built using the cleaned training set and tested
on the original dirty test set; and Case D represents a model built
using the cleaned training set and tested on the cleaned test set.
Our goal is compare two of them to evaluate how cleaning affects
model performance, and a chosen comparison between two cases
is what we call a scenario in TableE] (e.g., “BD” is a scenario). Do
we then have a total of CZ = 6 scenarios? The answer is no, and in
fact, only two of them (“BD” and “CD”) make sense as explained
as follows:

e Scenario “BD”. This shows the effects of cleaning dirty data in the
training set when models are evaluated on the clean test set. This
is reflective of the real-world model building phase, where we are
given a dirty training set and we would like to know whether we
need to clean the training set. Of course, in order to test whether
cleaning training set helps, the two models need to be evaluated
on the same cleaned test set.

e Scenario “CD”. This shows the effects of cleaning dirty data in the
test set when models are trained on the clean training set. This
is reflective of the real-world model deployment phase, where
the model is deployed and is being used for new test data, and
we would like to know whether cleaning incoming dirty test data
helps with the predictive performance.

e Scenario “AB”. We do not compare the entries A and B because
in real-world data cleaning, we do not consider evaluating a test
set on a model trained with dirtiness, especially we are not inter-
ested in the performance improvement/degradation when swap-
ping dirty with clean test sets.

e Scenario “AC”. The comparison between A and C is also not
reported because in production we are not interested in the per-
formance of models evaluated on a dirty test set. It is common
practice to ensure the test set is clean for evaluating the model
performance.

e Scenario “AD” and “BC”. The two scenarios are based on two
different settings, which are not directly comparable.

Table 4: Where Cleaning is Performed

Dirty Test Set | Cleaned Test Set
Dirty Training Set A B

Cleaned Training Set C D

Table 5: Where Cleaning is Performed (Missing Values)

Deletion Test set | Imputation Test set
Deletion Training set A B

Imputation Training set C D

Special Handling for Missing Values. Missing values need spe-
cial attention; they occur when no value is stored for a variable in
an observation. We cannot train models when some data is miss-
ing. Thus, Cases A and B in Table [are not available for miss-
ing values. Instead of comparing dirty and cleaned datasets, we
compare the difference between a deletion dataset (a dataset with
missing values deleted) and an imputation dataset (a dataset with

missing values imputed). The four cases for missing values are
shown in Table[5] We only consider the “BD” scenario for miss-
ing values, which captures the difference of imputing and deleting
training samples while testing the model performance in the im-
puted test set. This scenario is the authentic scenario we encounter
in production, where it is not allowed to delete instances from the
test set, so missing values in the test set have to be repaired using
imputation methods.

4. RUNNING THE BENCHMARK

We have defined the domain of each key attribute. We call each
valid assignment of key attributes an experiment specification. By
definition, the experiment specification for a tuple ¢ in relation R
is t{R — Flag], where R € {R1, R2, R3}. For example, in Table
[@] s1, s2 and s3 are three experiment specifications in R1, R2 and
R3, respectively.

In this section, we present how to run the benchmark to generate
flags for each experiment specification in R1, R2 and R3. First,
given an experiment specification, we generate a pair of perfor-
mance metrics that will be used to determine the flag (Section@.
We then present our approach for controlling randomness in our
experiments (Section 4.2)). Finally, we show how to control false
discoveries (Section[4.3).

Table 6: Example of Experiment specifications

51

[Dataset | Error Type | Detection | Repair I ML Model [Scenario |
‘ EEG ‘ Outliers ‘ IQR ‘ Mean Imputation ‘ Logistic Regression ‘ BD
52
[Dataset | Error Type | Detection | Repair [Scenario |
‘ EEG ‘ Outliers ‘ IQR ‘ Mean Imputation ‘ BD

S3
[Dataset | Error Type | Scenario |
‘ EEG ‘ Outliers ‘ BD

4.1 Generating One Metric Pair

Given an experiment specification in R1, we can generate a pair
of metrics through following steps:

(1) Split dataset. We first split dataset randomly into a training
and a test set with a 70/30 ratio.

(2) Clean dataset. We clean the error in the training set and test
set with the specific cleaning methods. To avoid the data
leakage problem, all statistics needed for data cleaning, such
as mean and standard deviation, are computed only on the
training set and used to clean both training and test set.

(3) Training ML models. If the scenario is BD, we train two ML
models, one on dirty training set and one on clean training
set. If the scenario is CD, we only train one ML model on the
clean training set. We tune hyper-parameters of ML models
using random search and 5-fold cross validation.

(4) Evaluating ML models. If the scenario is BD, we evaluate
two ML models (one trained on a dirty training set, anther
trained on a clean training set) on the clean test set to get
a pair of metrics. If the scenario is CD, the model trained
on clean training set will be evaluated on dirty test set and
clean test set respectively to get a pair of metrics. The evalu-
ation metric is selected based on class imbalance. For class-
imbalanced datasets (i.e., KDD and Credit), we use F1 score
to evaluate the performance of models but for all the other
datasets, we use accuracy as the evaluation metric.

For experiment specifications in R2, the difference is that we
train various ML models at step (3) and select the model with the

best validation accuracy from cross validation as the model eval-
uated in step (4). For R3, in addition to model selection, we use
various cleaning methods to clean dataset at step (2) and select the
cleaning method resulting in the best validation accuracy. At step
(4), the test set cleaned by the best cleaning method is used to eval-
uate the best model.

EXAMPLE 4.1. We take the specifications in Table[6]as an ex-
ample to show how to generate one metric pair for each specifica-
tion.

To generate metric pair for s1, we first split EEG into training
and test datasets. We detect outliers in the training set and test set
using IOR detection and repair them with mean imputation. The
quantiles used in detection and mean used in repair are computed
on the training set. Then, since the scenario here is BD, we train
two logistic regression models on a dirty training set and a cleaned
training set respectively. Finally, we evaluate two models on the
cleaned test set and get two test accuracy scores to form a metric
pair as shown in Table[7]

To generate the metric pair for s2, we train various ML models.
Table [21?] shows that based on the validation accuracy, XGBoost is
the best model trained on the dirty training set and KNN is the best
model trained on the clean training set. We then evaluate two best
models on the cleaned test set to get two test accuracy scores to
form a metric pair.

To generate the metric pair for ss, in addition to model selection,
we use various cleaning methods. Table [9 shows the clean test
accuracy of best models under each cleaning methods. Based on
the validation accuracy, detecting outliers by SD and repairing by
deletion is the best cleaning method. Hence, we use its metric pair
as the metric pair for ss.

4.2 Handling Randomness

The above procedure has randomness, which mainly comes two
sources: (1) Search Randomness. This is introduced by random
search in tuning hyper-parameters. Different search spaces will re-
sult in different performances, which may affect the evaluation of
ML models. (2) Split Randomness. This is introduced by random
train/test split. Different train/test splits may result in different error
distribution, which may affect the quality of data cleaning.

4.2.1 Handling Search Randomness

To handle the randomness from random search, we repeat step
(3) and step (4) 5 times with different seeds for random search.
Each random search will generate a pair of metrics. To aggregate
5 pairs, for specifications in R1, since we care more about the per-
formance of a model on average, we averages each metric in the
pair over 5 random searches. For specifications in R2 and R3, sim-
ilarly as we select the best model based on the validation accuracy,
we select the one with the best validation accuracy from 5 random
searches for each metric. After repeating experiments with 5 times
random search, we still have one metric pair for each specification,
but it provides a better evaluation of the model performance and
reduces the effect of randomness caused by random search.

EXAMPLE 4.2. Table[I0|shows the five metric pairs we get from
repeating random search with 5 different seeds. For s1, we average
over 5 random search for each metric. For sa, as shown in Table
we select the one with the best validation accuracy from 5 random
search for each metric. s3 can be generated in a similar way.

4.2.2 Handling Split Randomness

To avoid the occasionality caused by a train/test split, we ran-
domly split each dataset 20 times with different seeds and repeat

Table 7: s; Metric Pairs

Train on Dirty Training Set Train on Clean Training Set

Model Validation Accuracy ‘ Clean Test Accuracy | Validation Accuracy ‘ Clean Test Accuracy
Logistic Regression 0.638849 ‘ 0.634179 0.673467 ‘ 0.668892
Metric Pair: (0.634179, 0.668892)

Table 8: s; Metric Pairs

Train on Dirty Training Set Train on Clean Training Set
Model Validation Accuracy | Clean Test Accuracy | Validation Accuracy | Clean Test Accuracy
AdaBoost 0.763205 0.711393 0.718193 0.715176
Decision Tree 0.822621 0.754784 0.796487 0.810414
KNN 0.895481 0.821095 0.948312 0.956386
Logistic Regression 0.638849 0.634179 0.673467 0.668892
Naive Bayes 0.453365 0.457276 0.634745 0.638407
Random Forest 0.918556 0.854695 0.903680 0.907210
XGBoost 0.932098 0.862706 0.920369 0.922786

Metric Pair: (0.862706, 0.956386)

Table 9: s3 Metric Pairs

Validation Accuracy of | Clean Test Accuracy of | Clean Test Accuracy of
Detect Method | Repair Method Best Model on Best Model on Best Model on
Clean Training set Dirty Training set Clean Training set
SD Delete 0.959370 0.937612 0.969928
SD Mean Imputation 0.955179 0.938140 0.964174
SD Median Imputation 0.955179 0.938140 0.964174
SD Mode Imputation 0.955179 0.937917 0.964174
IQR Delete 0.958072 0.929052 0.967190
IQR Mean Imputation 0.948312 0.862706 0.956386
IQR Median Imputation 0.944115 0.868046 0.951268
IQR Mode Imputation 0.946308 0.870049 0.957499
IF Delete 0.959250 0.935250 0.969846
IF Mean Imputation 0.957466 0.925456 0.966845
IF Median Imputation 0.957371 0.924789 0.966177
IF Mode Imputation 0.956990 0.927236 0.966400

Metric Pair: (0.937612, 0.969928)

Table 10: Aggregate Five Random Search For s;

Train on Dirty Training Set

Train on Clean Training Set

Random Search Seed | Validation Accuracy | Clean Test Accuracy | Validation Accuracy | Clean Test Accuracy
0.638849 0.634179 0.673467 0.668892
6130 0.638849 0.635292 0.673562 0.667557
5824 0.638849 0.634846 0.673372 0.668669
3659 0.638754 0.635291 0.672323 0.668892
3239 0.639040 0.634179 0.672323 0.669114
Average 0.634767 0.668625

Aggregated Metric Pair: (0.634767, 0.668625)

Table 11: Aggregate Five Random Search For s2

Train on Dirty Training Set

Train on Clean Training Set

Random Search Seed Validation Accuracy | Clean Test Accuracy | Validation Accuracy | Clean Test Accuracy
of the Best Model of the Best Model of the Best Model of the Best Model
8006 0.932098 0.862706 0.948312 0.956386
6130 0.930381 0.868046 0.948312 0.956386
5824 0.932098 0.862706 0.920369 0.922786
3659 0.930381 0.868046 0.948312 0.956386
3239 0.932098 0.862706 0.948312 0.956386

Metric Pair: (0.862706, 0.956386)

Table 12: Accuracy Evaluated on the Clean Test Set
Split Seed B D Split Seed B D

V144 | 0.632488 | 0.657321 | V5192
V235 | 0.634757 | 0.668625 | 5374 | 0.638362 | 0.676992
v2516 0.625812 | 0.666266 v5396 0.641032 | 0.672452
v2895 0.636404 | 0.662394 v6542 0.63992 | 0.670049
v2962 0.637161 | 0.674633 v7751 0.640098 | 0.669871
v3462 0.644726 | 0.673654 v7813 0.634535 | 0.676591
v3562 0.635514 | 0.67401 v8093 0.636271 | 0.666489
v4225 0.641478 | 0.674989 v8444 0.632443 | 0.673431
V4764 | 0.649177 | 0.680196 | v905 | 0.636671 | 0.673565
V5056 | 0.629773 | 0.669381 | v9394 | 0.632176 | 0.668303

0.631954 | 0.67401

the experiments under the same protocol on each train/test split.
Each split will generate one pair of metrics. Hence, we end up with
20 metric pairs for each specification.

EXAMPLE 4.3. Table[[2]shows 20 pairs of metrics from 20 dif-
[erent train/test splits for s;.

Given 20 pairs of metrics for each specification s = t{R— Flag],
we generate the flag t[F'lag] using paired sample ¢-test. We con-
sider 20 metric pairs as two sets of 20 observations from the same
dataset before and after data cleaning. Then paired sample ¢-test
can determine whether the mean difference between two sets of

observations is zero, positive or negative. The paired sample ¢-test
is formally defined below.

For each specification t[R — Flag], let 11" be the mean difference
of the metrics of the ML model before and after we clean the error
in the dataset with the detection and repair method. We define null
and alternative hypotheses for three types of paired sample ¢-test
as:

Hypothesis | Two-tailed ¢-test | Upper-tailed ¢-test | Lower-tailed ¢-test
Null Hi:p"=0 HI:p* <0 Hi:p*>0
Alternative | HZ : " # 0 H:pf>0 HI: ' <0

We run three types of paired sample ¢-test on 20 metric pairs. Let
Po, p1, p2 be the p-values of two-tailed t-test, upper-tailed t-test
and lower-tailed ¢-test respectively. Let « be the significant level.
The procedure for determining flags using paired sample ¢-test is
described below:

(1) if po > a, t[Flag] = “S”.

(2) if po < aand p1 < a, t[Flag] = “P”.

(3) if po < avand p2 < a, t[Flag] = “N”.

The intricacy of conducting two-tailed test and one-tailed test
together lies in the fact that if the test statistics distribution is sym-
metric (e.g., Gaussian), the p-value in one of one-tailed tests is half
of the p-value in a two-tailed test. Hence, a two-tailed test with
significance does imply that the one-tailed test under the same dis-
tribution is also significant; yet if the one-tailed test is significant,
the two-tailed one is not necessarily significant. What is criticized
often is that people only report a one-tailed test p-value because the
two-tailed test is insignificant. However, in our case, we do not face
this claim because we conduct three tests and only report the one-
tailed test results if its corresponding two-tailed test is significant.

EXAMPLE 4.4. For s1, we run two-tailed, upper-tailed and lower-
tailed sample t-test on 20 metric pairs (Table[I2). Assume o =
0.05. Table[13|shows po < a and p1 < o Thus, the flag of s1 is
determined to be “P”.

Table 13: p-values in ¢-test and Hypothesis Testing

Type p-value
Two-tailed (po) | 3.82E-17
Upper-tailed (p1) | 1.91E-17
Lower-tailed (p2) 1

4.3 Controlling False Discoveries

Since we aim at studying the significant impacts of data clean-
ing techniques on ML performances in spite of the search and split
randomness, we face the challenges that not all statistically sig-
nificant results in individual hypothesis tests are true discoveries.
Some results are significant simply due to the large number of tests
examined.

This is commonly known as the multiple hypothesis testing or
the multiple comparisons problem in the statistics literature [S8].
To see the effect of multiple testing, consider a case where there are
20 hypotheses to test and we set a significance level of o = 0.05.
The probability of observing at least one significant result just due
to chance is 1 — (1 — @)% ~ 0.64. With just 20 tests considered,
we have a 64% chance of observing at least one significant result,
even if all of the tests are actually not significant.

With 3,990, 570 and 150 hypotheses in our relations R1, R2 and
R3, respectively, it is highly likely that our results contain many
false discoveries by chance. Strategies to control the false discov-
eries caused by the multiple hypothesis testing problem usually ad-
just the significance level « in some way [58}|18||19]. For example,
a simple way to adjust « is called the Bonferroni correction [20

"Bonferroni correction is one of many familywise error rate
(FWER) methods, for an extensive survey, c.f. [[70].

which tests each hypothesis at the significance level of = instead
of o, where m is the number of tests. Unfortunately, this correction
also significantly increases the number of false negatives because it
can miss a lot of true significant tests. In practice, it is usually very
hard to determine the desirable significance level for every test so
that both false positives and false negatives are minimized [58]].
Instead of adjusting the significance level « for every test, an-
other strategy is to rank the tests by their p-values, which indicate
the statistical significance levels of tests [|65]]. This is called the
FDR approach [33| pg. 687] where we ensure that in expectation,
% = F DR, where R is the total number of rejections, and V'
the number of false rejections. Common FDR approaches include
Benjamini-Hochberg (BH) and Benjamini-Yekutieli (BY) proce-
dures, where we try to control the FDR that is “(upper) bounded
by a user-defined level o” (33| pg. 688]). We employed the BY
procedure since it controls the FDR under arbitrary dependence as-
sumptionsﬂ For each relation, we conduct a separate multiple hy-
pothesis testing. We assign « to be 0.05 in our experiments.

EXAMPLE 4.5. P-values for si (Table [7_3’]) are corrected in a
multiple testing setting where we run BY-Procedure on p-values of
all of hypotheses in R1. Table[I4]shows the corrected p-values for
s1. Since po < a and p1 < o Thus, the flag of s1 is finally
determined to be “P”.

Table 14: Corrected p-values of the Example Analysis (Outlier)

Test Type Corrected p-value
Two-tailed (po) 6.28E-17
Upper-tailed (p1) 3.25E-17

Lower-tailed (p2)

1

S. ANALYZING BENCHMARK RESULTS

We inspect the correlation between the test accuracy scores in
the scenarios BD and CD. In Figure [I] the scatter plots are gen-
erated based on R3. We plot the test accuracy scores of 20 splits
in each dataset, given the best model and the best data cleaning
method. Different colors correspond to various datasets. The visu-
alization shows that: (1) cleaning does not always improve the ML
performance; (2) cleaning can help improve accuracy scores up to
10% (e.g., cleaning outliers in the scenario CD); (3) the improve-
ments vary largely from one error type to another; (4) we need a
systematic and principled approach to analyze the results.

Table[T3]presents the results according to the query templates we
define in Section 2.2} In Section[5.1]to[5.5] we present the impacts
of each type of error on ML by analyzing the query results. In
Section[5.6] we summarize the key insights.

5.1 Inconsistencies

Insight #1: Cleaning inconsistencies is more likely to have
insignificant impact and unlikely to have negative impact on ML.
Insight #2: Model selection increases the probability of having
positive impacts on ML.

Q1: We first group by flags on the tuples in R1, R2 and R3. Ta-
ble Ql(E:Inconsistencies) shows no negative flags (“N”) in the
impact directionality. For every relation, the insignificant changes
(“S”) have the largest likelihood. This implies that cleaning incon-
sistency in both training and test sets is unlikely to produce negative
impacts on the ML model performance. Furthermore, comparing
the percentages of “P” among all the relations, selecting the best

“https://en.wikipedia.org/wiki/False_discovery rate (last accessed:
February 12, 2019).

Table 15: Benchmark Results(Organized by Query)

QI(E) QI(E=Duplicates) QI(E=Mislabels)

R 5 N R P S N R S N

RI | 14.29% 8) 85.71% @3) | 0%(0) RI 17.86% (10) T143% @0) | 10.71% (6) RI 59.52% (75) 26.19% (33) | 14.29% (18)

R2 | 25.0% (2) 75.0% (6) 0%(0) R2 12.5% (1) 62.5% (5) 25.0% (2) R2 61.11% (11) 27.78% (5) | 11.11% (2)

R3 | 375% (3) 625% (5) 0%(0) R3 25.0% (2) 50.0% (@) 25.0% (2) R3 6LI1% (1) 27.78% (5)_| 11.11% (2)

Q1

QI(E=Outliers) QI(E=Missing Values)

R [P S N P S N

R | 31.55% (265) 57.02% @79) | 11.43% (96) RI 61.51% (155) 34.92% (88) | 3.57% (9)

R2 | 33.33% (40) 60% (72) 6.67% (3) R2 50.00% (18) 50.00% (18) | 0.00% (0)

R3 | 30% 3) 70% (7) 0% (0) R3 50.00% (3) 50.00% (3)__| 0.00% (0)

Q2(E=Inconsistencics) Q2(E=Duplicates) Q2(E=Mislabels)

R_[Scenario P S R Scenario P S N 13 Scenario P S D

r1 LBD 714% (2) 92.86% (26) . BD 071% ()| 150% 20| 1429% @ . BD 50.79% (32) | 49.21% (31) | 0.0% (0)
CD 21.43% (6) 78.57% (22) CD 25.0% (7) 67.86% (19) | 7.14% (2) CD 68.25% (43) | 3.17% (2) 28.57% (18)

R L BD 25.0% (1) 75.0% (3) 2 BD 0.0% (0) 50.0% (2) 50.0% (2) R BD 7443% (3) | 55.56% (5)_| 0.0% (0)
CD 25.0% () 75.0% (3) <D 25.0% () 75.0% (3) 0.0% (0) <D 77.78% (7)_| 00% (0) 22.22% (2)

& BD 25.0% (D 75.0% (3) 5 BD 0.0% (0) 50.0% (2) 50.0% (2) & BD 3444% @) | 55.56% (3)_| 0.0% (0)
CD 50.0% () 50.0% () D 50.0% (2) 50.0% (2) 00% (0) D T7.78% ()| 0.0% (0) 22.22% @

Q@

Q2(E=Outliers)

R_[Scenario P S N

r1 BD 50.79% (32) | 4921% 31)_| 00% (0)

CD 68.25% @3) | 3.17% () 28.57% (18)

R BD 444% @) | 55.56% (5)_| 0.0% (0)

“ [cd 77.78% (1)__| 00% (0) 22.27% @)

& BD H43% @) | 5556% (3) | 0.0% (0)

° [cp T7.78% ()| 00% (0) 2.22% @

Q3(E: Q3(E=Duplicates) Q3(E=Mislabels)

R Model P S R Model P S N R Model P S N
AdaBoost 12.5% (1) 87.5% (1) AdaBoost 25.0% (2) 75.0% (6) 0.0% (0) AdaBoost 77.78% (14) | 11.11% (2) | 11.11% (2)
Decision Tree 0.0% (0) 100.0% (8) Decision Tree 0.0% (0) 100.0% (8) | 0.0% (0) Decision Tree 66.67% (12) | 22.22% () | 11.11% (2)
KNN 25.0% (2) 75.0% (6) RKNN 12.5% () 87.5% () 0.0% (0) RNN 50.0% (9) | 38.89% (1) | I1.11% (2)

RI [TLogistic 12.5% (D) 87.5% () RI Logistic Regression | 25.0% (2) 62.5% (5) 12.5% () RI Logistic Regression | 55.56% (10) | 33.33% (6) | IL.11% (2)
Naive Bayes 12.5% (1) 87.5% (1) Naive Bayes 37.5% (3) 30.0% (@) 12.5% (1) Naive Bayes 27.78% (5) | 38.89% (7) | 33.33% (6)
Random Forest 25.0% (2) 75.0% (6) Random Forest 12.5% () 62.5% (5) 25.0% (2) Random Forest 61.11% (1) | 27.78% (3) | I1.11% (2)
XGBoost 12.5% () 87.5% (1) XGBoost 12.5% () 62.5% (5) 25.0% (2) XGBoost T7.78% (14) | 11.11% ()| 11.11% (2)

Q3

Q3(E=Outliers) Q3(E=Missing Values)

R Model P S N R Model P S N
AdaBoost 20% (24) 62.50% (75) | 17.50% (21) AdaBoost 20% (24) 62.50% (75)_| 17.50% (21)

Decision Tree 27.50% (33) | 65.83% (19) | 6.67% (8) Decision Tree 27.50% (33)_| 65.83% (19) | 6:67% (8)
KNN 50% (60) 34.17% (33) | 583% (1) KNN 50% (60) 4.17% (53)_| 583% (1)

R1 [Togistic Regression | 28.33% (34) | 56.67% (68) | 13% (18) RI Logistic Regression | 28.33% (34) | 56.67% (68) | 15% (I8)
Naive Bayes 34.17% @1)_| 58.33% (10) | 75% (9) Naive Bayes 34.17% @1) | 58.33% (10) | 75%)
Random Forest 29.17% (35) | 56.67% (68) | 14.17% (IT) Random Forest 29.17% (35) | 56.67% (68) | 14.17% (IT)
XGBoost 31.67% (33) | 55% (66) 13.33% (16) XGBoost 31.67% (33) | 55% (66) 13.33% (16)

Q4.1(E=Outliers) Q4.2(E=Outliers) Q4.2(E=Missing Valucs)

R_[Detect Method P S N R Repair Method P S N R Tmputation Method | P S N
F 32.14% (90) | #7.14% (132) | 20.71% (58) Delete 32.86% (69) | 50.48% (106) | 16:67% (35) Mean Dummy 54.76% (23) | 4048% (I7) | 4.76%)

RI [TQR S0.71% (142) | 3821% (107) | TL07% GD | | o, Mean 31.90% (67) | 60.95% (128) | 7.14% (15) Median Dummy | 59.52% (25) | 35.71% (I5) | 4.76% (2)
SD 11.79% (33) | 85.71% (240) | 2.50% (1) Mode 3095% (63) | 57.14% (120) [T190% 25) | | ; Mode Dummy 64.29% (27) | 3095% (13) | 4.76% (2)
F 32.50% (13)_| 60% (24) 7.50% (3) Median Imputation | 30.48% (64) | 59.52% (125) | 10.00% (21) Mean Mode 64.29% (27) | 33.33% (14) | 2.38% ()

Qu | B2 [IOR 52.50% 21)_| 35% (14) 12.50% (5) Delete 33.33% (10) | 53.33% (16) | 13.33% @) Median Mode 61.90% (26) | 35.71% (15) | 2.38% (1)
SD 5% (6) 85% (39) 0% (0) R Mean i 3333% (10) | 6333% (19) | 3.33% () Mode Mode 64.29% (27) | 33.33% (14) | 2.38% (1)

Mode 30.00% 9) | 63.33% (19)_| 667% (2) Mean Dummy 50.00% (3)_| 50.00% (3) | 0.00% (0)

Median Imputation_| 36.67% (11) | 60.00% (18) | 3.33% () Median Dummy 50.00% (3)_| 50.00% (3) | 0.00% (0)

R Mode Dummy 50.00% (3) | 50.00% (3) | 0.00% (0)

Mean Mode 50.00% (3)_| 50.00% (3) | 0.00% (0)

Median Mode 50.00% 3)_| 5000% (3) | 0.00% (0)

Mode Mode 50.00% (3) | 50.00% (3) _| 0.00% (0)

Q5(istenci QS(E=Duplicates) Q5(E=Mislabels)

R_[Datasct P S R Datasct P 5 N R Datasct P S N
Company 2857% @ | 11.43% (10) Airbnb 0.0% (0) 85.71% (12) | 14.29% () EEG_major T857% (1) | 14.29% () _| 7.14% (1)

ri [Movie 2143%(3) | 78571% (1) RI Citation 714% (D) 85.71% (12) | 7.14% () EEG_minor T857% (1) | 21.43% (3)_| 0.0% (0)

0.0% (0) 100.0% (14) Movie 64.29% (9) 2857% (&) 7.14% (1) EEG_uniform 7857% (11) | 14.29% (2) | 7.14% (1)
University 7.14% (D) 92.86% (13) Restaurant 0.0% (0) 8571% (12) | 14.29% () KDD_major 2857% @) | 2143% (3)_| 50.0% (1)
Company 0.0% (0) 100.0% (2) Airbnb 0.0% (0) 100.0% (2) | 0.0% (0) KDD_minor 50.0% (1) _| 50.0% (7)) _| 00% (0)
ra | Movie 1000% (2) | 0.0% (0) R Citation 0.0% (0) 1000% (2) | 0.0% (0) KDD_uniform 3571% (5) | 1429% ()| 50.0% (1)
0.0% (0) 100.0%) Movic 50.0% () 0.0% (0) 50.0% (1) ajor [500% ()| 42.86% (6) | 7.14% (D)
University 0.0% (0) 100.0% (2) Restaurant 0.0% (0) 50.0% (1) 50.0% (1) inor | 64.29% (9) | 35.71% (5) | 00% (0)
Company 0.0% (0) 100.0% (2) Airbnb 0.0% (0) 100.0% (2) | 0.0% (0) RI USCensus_uniform | 71.43% (10) | 21.43% (3) | 7.14% ()

Rr3 [Movie 100.0% (2) _| 0.0% (0) - Citation 50.0% (D) 50.0% (1) 0.0% (0) EEG.major 1000% (2) | 00% (0) 0.0% (0)
Restaurant 50.0% (1) 50.0% (D) Movie 50.0% (D) 0.0% (0) 50.0% (D) EEG_minor 1000% (2) | 00% (0) 0.0% (0)
University 0.0% (0) 100.0% (2) Restaurant 0.0% (0) 50.0% (1) 50.0% (1) EEG_uniform 100.0% (2)_| 0.0% (0) 0.0% (0)

KDD_major 0.0% (0) 50.0% ()| 50.0% ()
s | Q3(E=Outliers) Q5(E=Missing Values) KDD_minor 50.0% ()| 500% (1) _| 0.0% (0)

R_[Dataset P S N Relation | Dataset P S D KDD_uniform 0.0% (©0) 50.0% (D | 50.0% (D
Afrbnb 0.0% (0) 85.71% (12) | 14.29% (2) Airbnb 2321% (39) | 70.83% (119) | 5.95% (10) USCensus_major 50.0% (1) 50.0% (1) 0.0% (0)

i | Citation 7.14% (D) 85.71% (12) | 7.14% (1) Credit 22.62% (38) | 43.35% (13) | 33.93% (57) USCensus_minor__| 50.0% (1) _| 50.0% (1) _| 0.0% (0)
Movie 64.29% 9) | 28.57% &) _| 7.14% () RI EEG 60.12% (101) | 33.93% (57) | 5.95% (10) USCensus_uniform_|_1000% (2) | 0.0% (0) 0.0% (0)

0.0% (0) 85.71% (12) | 14.29% (O KDD 357% (6) 93.45% (157) | 2.98% (5) EEG.major 1000% (2) | 00% (0) 0.0% (0)
Airbnb 0.0% (0) 1000% () | 0.0% (0) Sensor B21% 8| $345% (13)_| 8.33% (19 EEG_minor T000% (2) | 00% () 00% (0)

Ro [Ciation 0.0% (0) 100.0% (2) _| 0.0% (0) Airbnb 3750% 9) | 62.50%(15) _| 0% (0) EEG_uniform 100.0% (2)_| 0.0% (0) 0.0% (0)

Movie 50.0% (D) 0.0% (0) 50.0% (1) Credit 0% (0) 66.67% (16) | 33.33% (8) KDD_major 0.0% (0) 50.0% ()| 50.0% ()
0.0% (0) 50.0% () 50.0% (1) R2 EEG 79.17% (19) | 20.83% (5)_| 0% (0) R3 KDD._minor 50.0% (D__| 3500% (1) _| 0.0% (0)
Airbnb 0.0% (0) 1000%) | 0.0% (0) KDD 0% (©0) 100% (0) 0% (0) KDD_uniform 0.0% (©0) 50.0% (D | 500% (D)

Rr3 [Citation 50.0% (1) 50.0% (1) 0.0% (0) Sensor 50% (12) 50% (12) 0% (0) USCensus_major 50.0% (1) 50.0% (1) 0.0% (0)

° [[Movie 50.0% (D) 0.0% (0) 50.0% (1) Airbnb 50% (1) 50% (1) 0% (0) USCensus_minor__| 50.0% (1) _| 50.0% (1) _| 0.0% (0)
Restaurant 0.0% (0) 50.0% () 50.0% (1) Credit 0% (0) 100% (2) 0% (0) USCensus_uniform | 1000% (2) | 0.0% (0) 0.0% (0)

R3 EEG 50% (D) 50% (1) 0% (0)

KDD 0%(0) 00% (2) 0% (0)

Sensor 50% (D) 50% (1) 0% (0)

ML model and the best data cleaning strategy helps to gradually
introduce positive changes to ML performances after data clean-
ing.

Q2: Table[T3} Q2(E=Inconsistencies) shows the query results
of grouping by flags and scenarios, which follows the tendency we
observe in QI, i.e., no negative impacts on ML performance af-
ter cleaning inconsistency in both scenarios. Adding an auto ML

model/cleaning tuner increases the changes of positive impacts.
Q3: Grouped by ML models, it is noticeable that all the ML
models have demonstrated the same tendency in the impacts of data
cleaning, as shown in Table Q3(E=Inconsistencies). Again,
there is no negative impact on ML performances that cleaning in-
consistency can induce.
Q5: At last, we group by datasets and provide a view on dataset

Inconsistencies (scenario CD) Duplicates (scenario CD)

Mislabels (scenario CD) Outliers (scenario CD)

10] * Company s o0so * Airbnb e
Movie e Citation s
x Restaurant L x Movie o
099 x University s 0759 x Restaurant){«
o X a ”
o . o
E P =
8 o5 L, g 0.70 J
/ b4
’ 065 24
0.7 4 }gf s
e et
B 060 4 ~
06

Metric D

x EEG_major s 104 x Airbnb Py

* EEG_minor ”’, Credit pa
084 * EEG_ uniform b 08 e
- KDD_major " x EEG C'/

x KDD_minor a = KDD "

= KDD_uniform 0.6 - P
06 USCensus_major -2 * Sensor -~

* USCensus_minor @ g, L

% USCensus_uniform = «
04 xx

02
Ax

T T T
070 075 080

Metric C

T T T
08 0.9 060 065
Metric C

Inconsistencies (scenario BD)

1.0

Duplicates (scenario BD)

Mislabels (scenario BD)

T T T T T T T
1.0 04 06 08 10

Metric C

T T
0.6 0.8

Metric C

0.4

Outliers (scenario BD) Missing Values (scenario BD)

. R . 1.0 R . R - - X
* Company e * Airbnb e * EEG_major . 1.0 Airbnb r'd 094 ¢ Airbnb e
07 Movie D 80 Citation - *+ EEG minor s Credit Pt o Credit et J%3."
e 7 « EEG_uniform e L 08 4 MG
* Restaurant e * Movie 1 0.8 4 KDD_major i 08 e EEG "/ *+ KDD ’,'
0.9 University 075 4 Restaurant / ¢ KDD_minor KDD . °71 Marketing Y
a o , o * KDD_uniform 0 064 e Q 6 - g
K] © . ‘*} 2 06+ USCénsus_major © Sensor 7 © Titanic S
5 0. , 5 0704 B ﬁ‘ s USCensus_minor s S 054 USCensus
2 os e 2 ’/ § USCensus_uniform 2 2 L
d £ 04+ - 041 L
s 0.65 » f;ﬁ,
0.7 ’ e 03 4
«g o 02+ b
% % 024
B 060 4 # B
06

070 075 0.80

Metric B

0.8 0.9

Metric B

0.4
Metric B

06 0.8

Metric B

04 06 08 10

Metric B

0.6 0.8 1.0 02

Figure 1: Test Accuracy Scores in Scenarios BD and CD of 20 Splits for Five Error Types

choice and its influence on ML performance with data cleaning
strategy incorporated. As shown in Table [T3}(E=Inconsistencies),
in general, the pattern holds that insignificant impact of cleaning in-
consistency prevails; no negative impacts of cleaning inconsistency
was found. It is probably due to the idiosyncrasy in the Movie
dataset, which has 48% of inconsistenciesEf, the improvement an
auto ML/cleaning strategy tuner brings is 78.57% in the direction
of positive changes.

5.2 Duplicates

Insight #1: Cleaning duplicates is more likely to have insignificant
impacts on ML and it is possible to produce negative impacts.
Insights #2: With model selection, negative impacts caused by

cleaning test set can be eliminated.

Q1: From the query on flags shown in Table[T5}Q1(E=Duplicates),

it is unclear that if cleaning duplicates could bring either positive
or negative impacts. In all the relations, the number of insignif-
icant flags has the largest percentage compared with the positive
and negative flags.

Q2: Looking scenarios grouped by flags in Table @ Q2 (E=
Duplicates), using a clean test set with a clean training model (CD)
is highly unlikely to result in negative changes of ML performance.
Especially when we utilize an auto ML/data cleaning tuner, the neg-

ative impacts disappear. In the scenario BD, utilizing an ML/cleaning

tuner does not decrease the chance of yielding negative impacts
when we clean the duplicates. This observation is also made from
the scatter plot on BD in Figure[l] where there are more points with
the “N” flag than the other two flags. The reason is due to the var-
ious duplication rates of features in the datasets, as we see when
analyzing the results of QS5 below.

Q3: We observe from Table @Q3(E=Duplicates) that for all
the ML models, AdaBoost, KNN and Decision Tree tend to have
no negative impact.

Q5: The discrepancies of datasets affect the ML performances
largely as we observe from Table @QS(E:Duplicates). For the
datasets “Airbnb” and “Citation”, the negative impacts could be

3We calculate the inconsistency of the datasets using the percentage
of minority class. For instance, in the dataset Movie, we correct the
values English and en under the variable “Language”. The value
English takes 52% in all the attribute values; the value en 48%. We
therefore replace en with English. This gives us an inconsistency
rate of 48%.

10

dampened to zero if we add an auto ML/cleaning tuner. Yet for the
datasets “Movie” and “Restaurant”, the negative impacts even in-
crease after we use an auto ML/cleaning tuner. This might be due to
the protocol of generating the duplicates, where we have combined
the two sources of datasets and do not correlate the duplication rate
with the class distribution. Finally, “Movie” has a duplication rate
of 40%, “Citation” 10%, “Airbnb” 10%, and “Restaurant” 10%.

5.3 Mislabels

Insight #1: Cleaning mislabels are highly likely to have positive
impacts on ML.
Insight #2: Cleaning mislabels for models that have bad
performances may produce negative impacts.

Q1: Table[T5}Q1(E=Mislabels) is generated by grouping flags,
which demonstrates strong positive impacts of cleaning mislabels
in all relations. The likelihood of improving ML model perfor-
mances after cleaning mislabels (the “P” flag) is higher than that
of insignificant changes (the “S” flag) , which is more likely than
reducing the ML model performances (the “N” flag).

Q2: In the scenario CD shown in Table @QZ(E:Mislabels),
cleaning mislabels has always a higher likelihood of rendering a
positive impact on the ML performances, which corresponds to the
observation from Figure m This could be understood by the fact
that using a clean training set and a clean test set, i.e., sets without
label flipping, ML performances are generally better than using a
clean training set and a corrupted test set. There are no negative
flags in the scenario BD under the error type “Mislabel”. We find
out that if we clean the dirtiness in the training set, it is highly
unlikely that the cleaning method has a negative impact on the ML
model performance.

Q3: Apart from Naive Bayes (Table @Q2(E=Mislabels)), all
the other ML models have demonstrated a stronger tendency in pro-
ducing more accurate predictions after cleaning the mislabels.

Q5: We observe that the negative impact only occurs when the
model has a bad performance (accuracy < 50%). This is because
when we inject mislabels by flipping labels, we are more likely
to flip a label that bad models predict incorrectly. Then accu-
racy of bad models is likely to be improved after injecting mis-
labels. Hence, cleaning mislabels may reduce the performance of
bad models. With model selection, the negative impact is reduced,
since we are less likely to have a bad model.

5.4 Outliers

Insight #1: Cleaning outliers is more likely to have insignificant
and positive impacts, but it may produce negative impacts on ML.
Insight #2: With model selection, the probability of having
negative impacts can be reduced. With cleaning method and
model selection, it is unlikely to have negative impacts.
Insight #3: The probability of having positive and negative
impacts is highly related to datasets and detection methods.

Q1: Table[T3}Q1(E=Outliers) shows the results of Q1 for outliers.
The results of R1 indicate that cleaning outliers mostly have no im-
pact or positive impact on ML, but sometimes it may negatively
affect ML. This is because outlier detection and repair are not com-
pletely accurate. The detection methods are usually based on the
assumptions of the error distribution, which may not be the under-
lying authentic distribution. Some outliers may be true data instead
of errors although they are distant from other instances. Cleaning
such data will distort the true distribution of the dataset, which re-
sults in negative impact on ML.

The results of R2 and R3 show that with the model selection and
with the cleaning method selection the percentage of flag “N” de-
creases to 0 and the percentage of “S” increases, while the flag “P”
remains at the similar percentage. This indicates that using model
selection and cleaning method selection can eliminate the negative
impact of cleaning outliers and improve the robustness without los-
ing too much benefit.

Q2: Table [[5}Q1(E=Outliers) shows the results of Q2 for out-
liers. In R1, R2 and R3, BD and CD have similar percentage scores
of “P”, “S” and “N”. This indicates that cleaning outliers in the
training and test sets have similar impacts on ML models.

Q3: Table [[3}Q3(E=Outliers) shows the results of Q3 for out-
liers. KNN has more “P” flags, less “N” and “S” flags than other
models. Therefore, KNN is the most sensitive model to outliers
and gains most benefit from cleaning outliers. Other models are
affected similarly.

Q4.1: Table[T5}Q4.1(E=Outliers) shows the results of Q4.1. In
R1, IQR and IF have more “P” flags and “N” flags than the SD
method. This indicates that IQR and IF are more aggressive than
SD and SD is more conservative. In R2, the negative impact of IF
and IQR is largely eliminated by model selection, but the positive
impact remains.

Q4.2: Table Q4.2(E=Outliers) shows that there is no signifi-
cant difference between repair methods in both R1 and R2.

Q5: Table [T3}Q5(E=Outliers) shows the result of Q5. In R1,
most negative flags are from “Credit” and “KDD” datasets. In R2,
all of negative flags are from “Credit”. EEG and Sensor have more
“P” flags than other datasets. This echoes our interpretation in Q1
that the impact of outliers on ML models largely depends on the
error distribution in the dataset.

5.5 Missing Values

Insight #1: Cleaning missing values by imputation are more likely
to improves the performance or achieves similar performance as
deleting missing values.

Insight #2: With model selection and imputation method selection,
ML models tend to be more robust to missing values.

As mentioned in section@ we only consider one scenario (BD)
for missing values. Therefore, we do not run Q2 for missing values.
Q1: Table [T5}Q1(E=Missing Values) shows the results of Q1
for missing values. The result of R1 exhibits that cleaning missing
values by imputation mostly improves the performance or achieves
similar performance as deleting missing values. But there are still

few “N” flags, which indicates that imputation can sometimes hurt
the performance. The reason is that imputation is simply an approx-
imation of ground truth. If the imputation is distant from ground
truth, it may introduce bias to data and reduce the performance of
ML.

The results of R2 and R3 show that, with model selection, “N”
flags are eliminated and the percentage of ““S” flags increases. There-
fore, ML becomes more robust to missing values.

Q3: Table @QS(EzMissing Values) presents the results of Q3.
Only Naive Bayes has “N” flags. Therefore, Naive Bayes is the
most vulnerable model to missing value imputation. Other models
have similar results.

Q4.2: Table Q4.2(E=Missing Values) shows the results for
Q4.2. In both R1 and R2, different imputation methods have sim-
ilar results. Therefore, different imputation methods have similar
impacts.

Q5: Table @QS(E:Missing Values) shows the results of Q5.
In R1, “USCensus” has much less “P” flags and more “N” flags
than other datasets. The reason may be that the imputation in this
dataset is distant from ground truth. All of flags in “KDD” are
“P”, which indicates that imputation in this dataset may be close
to ground truth. R2 and R3 show that with the model selection the
negative impact in “UScensus” caused by missing value imputation
is eliminated.

5.6 Summary of Key Insights

Data cleaning does not necessarily improve the quality of
downstream ML models. We see from the result analyses that
applying cleaning methods blindly could negatively impact model
performances. Cleaning methods could introduce biases and some-
times this bias is larger than the original bias: (1) It is unclear that if
cleaning duplicates could bring either positive or negative impacts,
defining a better duplicate injection protocol is key. (2) Cleaning
outliers mostly have no impact or positive impact on ML, but some-
times it may negatively affect ML. The effects are highly dependent
on detection and repair techniques. (3) If the imputation of missing
values is distant from ground truth, it may introduce bias to data
and reduce the performance of ML.

Interpretation of the experimental results should take into the
following factors: the errors and their distributions on the datasets
(which are unknown), the correctness of the cleaning algorithms
(which are also unknown without ground truth), and the internal
structures of the ML models (which can be hard to interpret for
some models). Since these factors are jointly at work, it could
be hard to interpret the results: (1) Cleaning inconsistency in both
training and test sets is unlikely to produce negative impacts on the
ML model performance. Dataset choice and dirtiness in key fea-
tures matter. (2) Dataset choices and how to inject duplicates when
combining the datasets are crucial in the experiment setups of du-
plicates. (3) Class distribution has a huge impact on how mislabels
should be cleaned.

Performing model selection can significantly increase the ro-
bustness of impacts of cleaning on ML. This effect has been iden-
tified in cleaning all error types. In particular, the negative effect of
data cleaning can be eliminated by selecting the best ML model.

Performing cleaning algorithm selection further increases the
robustness of impacts of cleaning on ML. This effect has been
identified in cleaning all the error types. Since the data cleaning
techniques are dependent of error distributions in datasets, no sin-
gle cleaning algorithm is the best, and any future joint cleaning and
ML work must devise “adaptive” cleaning solutions.

6. RELATED WORK

6.1 Work in DB Community

Despite the many fruitful research contributions in the general
area of data cleaning, the dirty data problem remains challeng-
ing [22]. Recent study shows that even the combination of current
error detection techniques can still miss many errors in real-world
datasets [13]. We refer users to various surveys and tutorials on the
broad topic of data cleaning [54} |39} 31 40].

ML for data cleaning. Various ML techniques have been used
in multiple data cleaning activities. Scared [66] and GDR [67]] use
ML classification models to predict the likelihood of a candidate
value update. Active learning is used to judiciously solicit human
inputs to detect duplicate records [59, |17]]. HoloClean [56] builds
a graphical model to holistically reason about various signals to
assign a probability to a candidate repair. Even deep learning tech-
niques have been used for entity matching [29, 49].

Analytics-driven cleaning. As data cleaning itself is expensive
and it is hard to reach ground truth, the DB community is start-
ing to work on analytics-driven cleaning methods, which usually
aim at reducing cleaning cost so that a given data analytical task
can return better results. SampleClean [64] targets the problem of
answering aggregate queries when the input data is dirty. Sample-
Clean aims at answering a query only by cleaning a sample of the
dirty dataset, and at the same time, providing confidence interval
guarantees the query results. ActiveClean [44] is an example of
cleaning data intelligently for convex models that are trained us-
ing gradient descent methods. The key insight of ActiveClean is
that convex loss models (e.g., linear regression) can be trained and
cleaned simultaneously. However, ActiveClean assumes that the
cleaning is performed by an oracle. BoostClean [43] automatically
selects an ensemble of error detection and repair combinations us-
ing statistical boosting. It does show promising results in terms
of increased prediction in some datasets. However, BoostClean
only considered domain value violations when an attribute value
is outside of its value domain and only tested random forest model,
while CleanML consider five error types and seven ML models.
CleanML also features the use of (multiple) hypothesis testing to
control randomness and to ensure that our findings are statistically
significant.

Benchmarks. The DB community has the tradition of creating
benchmarks, such as Wisconsin benchmark [28|] and TP The
ML community has also contributed to benchmarking in various
ways: MLBench, “the first benchmark for declarative ML on the
cloud”; DAWNBench’| a benchmark for end-to-end deep learning
competition; MLPerf’| a broad ML benchmark to measure ML sys-
tem performance.

In this paper we create yet another benchmark to jointly study
ML and data cleaning techniques. This work is inspired by bench-
mark efforts in the data cleaning and ML communities.

6.2 Work in ML Community

Impact of Noise on ML Models. Marlin [47] explores a va-
riety of strategies for performing classification with missing fea-
ture values. Garcia-Laencina et. al. [35] reviews a group of im-
portant missing data techniques in pattern classification. Acuifia
et. al. [15] study the effects of outliers on three classifiers (Linear
discriminant analysis (LDA), KNN and decision trees). Kotcz et.
al. [42] investigates the effects of class-biased duplicates using a
spam-detection dataset. Artificial duplicates are only introduced

*http://www.tpc.org/information/benchmarks.asp(last ~ accessed:

Feb 28, 2019).

Shttps://dawn.cs.stanford.edu/benchmark/(last accessed: Feb 28,
2019).

®https://www.mlperf.org/(last accessed: Feb 28, 2019).

into the spam class and two classifiers (Nave Bayes and Perceptron
with Margins (PAM)) are tested. Frénay [32] outlines the effects
of label noise including deterioration of classification performance
and increased model complexity. Van Hulse et. al. [62] show that
mislabeled minority class examples have a greater impact on clas-
sification performance than mislabeled majority class examples. Qi
et. al. [51]] conducts an experimental comparison of the effects of
inconsistent data on classification, clustering, and regression algo-
rithms. Two metrics (sensibility and keeping points) are proposed
to measure effects. The results show that Bayesian Network is the
most robust model, while random forest is the least robust. These
studies are mostly isolated, and focuses on how particular kinds
of noise with certain distributions affect certain ML models. In
contrast, CleanML builds comprehensive a benchmark to study the
effects of cleaning on ML, and carefully controls randomness to en-
sure the results are statistically significant, which is usually missing
in previous studies.

Robust ML. Another line of work aims at developing ML algo-
rithms that are robust to certain noises. Quinlan [53] proposes a
learning algorithm for building noise-robust decision trees. Abel-
lan and Moral [14] shows that using imprecision information gain
can improve the accuracy of decision trees against the presence of
label noise. Teng [|61]] demonstrates that over-fitting avoidance ap-
proaches, like regularization, can improve the robustness of ML
models. Khoshgoftaar et al. [41] show that bagging can improve
model performance due to the variability caused by dirty data.

7. CONCLUSIONS AND
OPEN RESEARCH DIRECTIONS

This paper proposes the CleanML benchmark that studies the
impact of data cleaning on ML, and we obtained many valuable
insights as discussed in Section [I]and[5] We hope that this study
will invite many future work on joint data cleaning and ML. We list
some open research directions as follows.

1. Extending the CleanML Benchmark. While CleanML repre-
sents the most comprehensive study on the subject to date,
there are many interesting future extensions. For example,
we need more datasets with diverse error distributions, espe-
cially for missing values and outliers, as the current CleanML
has no ground truth for these error types.

2. Identifying the Biases Introduced in Data Cleaning. As dis-
cussed, cleaning does not necessarily help and can some-
times even harm model performances. To decide whether
a given cleaning method should be applied to an ML task,
we need to detect whether the cleaning process introduces
more biases than the dirtiness itself, which is an interesting
research problem.

3. Holistic Cleaning for ML. CleanML currently considers each
error type separately as a first step to understand how clean-
ing affects ML. Real-world datasets often exhibit multiple er-
ror types and they interact in non-trivial ways. Whether the
benefits of cleaning are sub-linear, compositional, or super-
linear remains an open question.

4. Principled Approach for Joint Data Cleaning and ML. We
believe that there need to be principled approaches that jointly
deal with dirty data and model training, so as to achieve the
best performance. The cleaning process needs to be model-
driven, and the training process needs to be error-aware.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Citation dataset. https://sites.google.com/site/
anhaidgroup/useful-stuff/data, Accessed: April
23, 2019.

Company dataset. https://www.kaggle.com/
Jjacksapper/company—-sentiment-by—-location.
Accessed: April 23, 2019.

Credit dataset. https:
//www.kaggle.com/c/GiveMeSomeCredit/datal
Accessed: April 23, 2019.

EEG dataset. https://archive.ics.uci.edu/ml/
datasets/EEG+Eye+State. Accessed: April 23, 2019.
IMDB movie dataset. https://data.world/
popculture/imdb-5000-movie-dataset.
Accessed: April 23, 2019.

KDD dataset. https://www.kaggle.com/c/kdd-
cup—2014-predicting-excitement—-at—
donors—-choose/datal. Accessed: April 23, 2019.
Restaurant dataset. https://sites.google.com/
site/anhaidgroup/useful-stuff/datal
Accessed: April 23, 2019.

Sensor dataset. http:
//db.csail.mit.edu/labdata/labdata.html}
Accessed: April 23, 2019.

Titanic dataset.
https://www.kaggle.com/upendr/titanic—
machine-learning-from-disaster/data.
Accessed: April 23, 2019.

TMDB movie dataset. https:
//www.kaggle.com/tmdb/tmdb-movie-metadata.
Accessed: April 23, 2019.

University dataset. https://archive.ics.uci.edu/
ml/datasets/University, Accessed: April 23, 2019.
USCensus dataset. https://archive.ics.uci.edu/
ml/datasets/US+Census+Data+%$281990%29.
Accessed: April 23, 2019.

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas,
M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang.
Detecting data errors: Where are we and what needs to be
done? Proceedings of the VLDB Endowment,
9(12):993-1004, 2016.

J. Abellan and S. Moral. Building classification trees using
the total uncertainty criterion. International Journal of
Intelligent Systems, 18(12):1215-1225, 2003.

E. Acufia and C. Rodriguez. An empirical study of the effect
of outliers on the misclassification error rate. Submitted to
Transactions on Knowledge and Data Engineering, 2005.
D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic.
QSGD: Communication-efficient sgd via gradient
quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1709-1720, 2017.
A. Arasu, M. Gotz, and R. Kaushik. On active learning of
record matching packages. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data,
pages 783-794. ACM, 2010.

Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: a practical and powerful approach to multiple
testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289-300, 1995.

C. Binnig, L. De Stefani, T. Kraska, E. Upfal, E. Zgraggen,
and Z. Zhao. Toward sustainable insights, or why polygamy

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

(371

is bad for you. In CIDR, 2017.

C. E. Bonferroni. Teoria statistica delle classi e calcolo delle
probabilita. Pubblicazioni del R Istituto Superiore di Scienze
Economiche e Commerciali di Firenze, 8:3—62, 1936.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pages
785-794. ACM, 2016.

X. Chu, L. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning:
Overview and emerging challenges. In Proceedings of the
2016 International Conference on Management of Data,
pages 2201-2206. ACM, 2016.

X. Chu, I. E Ilyas, and P. Papotti. Discovering denial
constraints. Proceedings of the VLDB Endowment,
6(13):1498-1509, 2013.

X. Chu, L. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE),
pages 458-469. IEEE, 2013.

X. Chu, J. Morcos, L. F. Ilyas, M. Ouzzani, P. Papotti,

N. Tang, and Y. Ye. Katara: A data cleaning system powered
by knowledge bases and crowdsourcing. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1247-1261. ACM, 2015.

Z. Cui, W. Chen, Y. He, and Y. Chen. Optimal action
extraction for random forests and boosted trees. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 179-188. ACM, 2015.

C. De Sa, M. Feldman, C. Ré, and K. Olukotun.
Understanding and optimizing asynchronous low-precision
stochastic gradient descent. In ACM SIGARCH Computer
Architecture News, volume 45, pages 561-574. ACM, 2017.
D. J. DeWitt. The wisconsin benchmark: Past, present, and
future. the benchmark handbook, j. gray, ed, 1991.

M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani,
and N. Tang. Distributed representations of tuples for entity
resolution. Proceedings of the VLDB Endowment,
11(11):1454-1467, 2018.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Transactions on
knowledge and data engineering, 19(1):1-16, 2007.

W. Fan and F. Geerts. Foundations of data quality
management. Synthesis Lectures on Data Management,
4(5):1-217, 2012.

B. Frénay and M. Verleysen. Classification in the presence of
label noise: a survey. IEEE transactions on neural networks
and learning systems, 25(5):845-869, 2014.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics
New York, 2001.

S. Garcia, J. Luengo, and F. Herrera. Data preprocessing in
data mining. Springer, 2015.

P. J. Garcia-Laencina, J.-L. Sancho-G6émez, and A. R.
Figueiras-Vidal. Pattern classification with missing data: a
review. Neural Computing and Applications, 19(2):263-282,
2010.

T. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class
adaboost. Statistics and its Interface, 2(3):349-360, 2009.

T. Hastie and R. Tibshirani. Discriminant adaptive nearest
neighbor classification and regression. In Advances in Neural

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://www.kaggle.com/jacksapper/company-sentiment-by-location
https://www.kaggle.com/jacksapper/company-sentiment-by-location
https://www.kaggle.com/c/GiveMeSomeCredit/data
https://www.kaggle.com/c/GiveMeSomeCredit/data
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://data.world/popculture/imdb-5000-movie-dataset
https://data.world/popculture/imdb-5000-movie-dataset
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/data
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/data
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
https://www.kaggle.com/upendr/titanic-machine-learning-from-disaster/data
https://www.kaggle.com/upendr/titanic-machine-learning-from-disaster/data
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://archive.ics.uci.edu/ml/datasets/University
https://archive.ics.uci.edu/ml/datasets/University
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

Information Processing Systems, pages 409—415, 1996.

Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and

S. Chaudhuri. Transform-data-by-example (tde): an
extensible search engine for data transformations.
Proceedings of the VLDB Endowment, 11(10):1165-1177,
2018.

J. M. Hellerstein. Quantitative data cleaning for large
databases. United Nations Economic Commission for Europe
(UNECE), 2008.

I. F. Ilyas, X. Chu, et al. Trends in cleaning relational data:
Consistency and deduplication. Foundations and Trends®) in
Databases, 5(4):281-393, 2015.

T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano.
Comparing boosting and bagging techniques with noisy and
imbalanced data. I[EEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 41(3):552-568,
2011.

A. Kotlcz, A. Chowdhury, and J. Alspector. Data duplication:
An imbalance problem? 2003.

S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu.
Boostclean: Automated error detection and repair for
machine learning. arXiv preprint arXiv:1711.01299, 2017.
S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and

K. Goldberg. Activeclean: interactive data cleaning for
statistical modeling. Proceedings of the VLDB Endowment,
9(12):948-959, 2016.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and

J. Liu. Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information
Processing Systems, pages 5330-5340, 2017.

T. Lin, S. U. Stich, and M. Jaggi. Don’t use large
mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

B. Marlin. Missing data problems in machine learning. PhD
thesis, 2008.

D. McFadden et al. Conditional logit analysis of qualitative
choice behavior. 1973.

S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,

G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep
learning for entity matching: A design space exploration. In
Proceedings of the 2018 International Conference on
Management of Data, pages 19-34. ACM, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

Z.Qi, H. Wang, J. Li, and H. Gao. Impacts of dirty data: and
experimental evaluation. arXiv preprint arXiv:1803.06071,
2018.

J. R. Quinlan. Induction of decision trees. Machine learning,
1(1):81-106, 1986.

J. R. Quinlan. Simplifying decision trees. International
Jjournal of man-machine studies, 27(3):221-234, 1987.

E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3-13, 2000.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In
Advances in neural information processing systems, pages

(561

[57]

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

693-701, 2011.

T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean:
Holistic data repairs with probabilistic inference.
Proceedings of the VLDB Endowment, 10(11):1190-1201,
2017.

L. Rish et al. An empirical study of the naive bayes classifier.
In IJCAI 2001 workshop on empirical methods in artificial
intelligence, volume 3, pages 41-46. IBM New York, 2001.
G. Rupert Jr et al. Simultaneous statistical inference.
Springer Science & Business Media, 2012.

S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 269-278. ACM, 2002.

S. K. Sarkar, H. Midi, and S. Rana. Detection of outliers and
influential observations in binary logistic regression: An
empirical study. Journal of Applied Sciences, 11(1):26-35,
2011.

C. M. Teng. Evaluating noise correction. In Pacific Rim
International Conference on Artificial Intelligence, pages
188-198. Springer, 2000.

J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano.
Skewed class distributions and mislabeled examples. In Data
Mining Workshops, 2007. ICDM Workshops 2007. Seventh
IEEE International Conference on, pages 477-482. IEEE,
2007.

R. Verborgh and M. De Wilde. Using OpenRefine. Packt
Publishing Ltd, 2013.

J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska,
and T. Milo. A sample-and-clean framework for fast and
accurate query processing on dirty data. In Proceedings of
the 2014 ACM SIGMOD international conference on
Management of data, pages 469—480. ACM, 2014.

R. L. Wasserstein, N. A. Lazar, et al. The asas statement on
p-values: context, process, and purpose. The American
Statistician, 70(2):129-133, 2016.

M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t
be scared: use scalable automatic repairing with maximal
likelihood and bounded changes. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of
Data, pages 553-564. ACM, 2013.

M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and
I. F. Ilyas. Guided data repair. Proceedings of the VLDB
Endowment, 4(5):279-289, 2011.

H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang.
Zipml: Training linear models with end-to-end low
precision, and a little bit of deep learning. In Proceedings of
the 34th International Conference on Machine
Learning-Volume 70, pages 4035-4043. JMLR. org, 2017.
W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware
async-sgd for distributed deep learning. arXiv preprint
arXiv:1511.05950, 2015.

Z.Zhao, L. De Stefani, E. Zgraggen, C. Binnig, E. Upfal,
and T. Kraska. Controlling false discoveries during
interactive data exploration. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages
527-540. ACM, 2017.

	1 Introduction
	2 Experimental Methodology
	2.1 CleanML Schema
	2.2 Analysis Methodology

	3 design of benchmark
	3.1 Error Types and Cleaning Methods
	3.1.1 Missing Values
	3.1.2 Outliers
	3.1.3 Duplicates
	3.1.4 Inconsistencies
	3.1.5 Mislabels

	3.2 Datasets
	3.3 ML Models
	3.4 Scenarios

	4 Running the Benchmark
	4.1 Generating One Metric Pair
	4.2 Handling Randomness
	4.2.1 Handling Search Randomness
	4.2.2 Handling Split Randomness

	4.3 Controlling False Discoveries

	5 Analyzing Benchmark Results
	5.1 Inconsistencies
	5.2 Duplicates
	5.3 Mislabels
	5.4 Outliers
	5.5 Missing Values
	5.6 Summary of Key Insights

	6 Related Work
	6.1 Work in DB Community
	6.2 Work in ML Community

	7 Conclusions and Open Research Directions
	8 References

